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Direct data-driven control works very well across case studies

. . . especially when first-principle models are hard or impossible to get
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Direct data-driven control
Based on behavioral systems theory

“direct" data-driven control

minimize control cost
(
u, y
)

subject to trajectory
(
u, y
)

compatible with
non-parametric model from raw data

Deterministic framework → need regularization!

So far: a posteriori justifications of robustness

Bottom-up stochastic modeling framework
• simple → tractable control fromulations
• robust by design
• quantify and shape uncertainty of trajectories

?
x+ = f(x, u)

y = h(x, u)
y

u

3 / 22



Outline

1. Data-driven control based on behavioral systems theory

2. Bottom-up stochastic modeling framework: Gaussian behaviors

3. Predictive control with Gaussian behaviors
 New insights on existing formulations
 Distributionally robust control
 Chance constraints and variance shaping
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Behavioral view on dynamical systems

Definition: A discrete-time dynamical
system is a 3-tuple (Z≥0, W, B) where

(i) Z≥0 is the discrete-time axis,

(ii) W is the signal space, &

(iii) B ⊆ WZ≥0 is the behavior.

 B is the set of
all trajectories

Definition: The dynamical system (Z≥0, W, B) is
(i) linear if W is a vector space & B is a subspace of WZ≥0

(ii) & time-invariant if wt ∈ B =⇒ wt+1 ∈ B

LTI system = shift-invariant subspace of trajectory space

−→ abstract perspective suited for data-driven control

y

u
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Fundamental Lemma

u(t)

t

u4

u2

u1 u3

u5
u6

u7

y(t)

t

y4

y2

y1

y3

y5

y6

y7

set of all T -length trajectories =
{
(u, y) ∈ R(m+p)T : ∃x ∈ RnT s.t.

x+ = Ax+Bu , y = Cx+Du
}

︸ ︷︷ ︸ ︸ ︷︷ ︸
parametric state-space model raw data (every column is an experiment)

colspan



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ud
1,1

yd
1,1

) (
ud
1,2

yd
1,2

) (
ud
1,3

yd
1,3

)
...

(
ud
2,1

yd
2,1

) (
ud
2,2

yd
2,2

) (
ud
2,3

yd
2,3

)
...

...
...

...
...

(
ud
T,1

yd
T,1

) (
ud
T,2

yd
T,2

) (
ud
T,3

yd
T,3

)
...




all trajectories constructible from finitely many previous trajectories = basis for B
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Data-enabled Predictive Control (DeePC) ↔ Model Predictive Control

min
g,u,y

Tfuture∑
k=1

∥yk − yref∥2
Q + ∥uk∥2

R

s.t. H
(

ud

yd

)
· g =

 uini
yini

u
y


uk ∈ U , ∀k ∈ {1, . . . , Tfuture}
yk ∈ Y, ∀k ∈ {1, . . . , Tfuture}

non-parametric
model for prediction

and estimation

min
x,u,y

Tfuture∑
k=1

∥yk − yref∥2
Q + ∥uk∥2

R

s.t. xk+1 = Axk + Buk

yk = Cxk + Duk

x0 = x(t)
uk ∈ U , ∀k ∈ {1, . . . , Tfuture}
yk ∈ Y, ∀k ∈ {1, . . . , Tfuture}

• real-time measurements (uini, yini) for estimation

• trajectory matrix H
(

ud

yd

)
from past experimental data

updated online

collected offline

Equivalent to MPC in deterministic LTI case . . .but does not work in case of noise!
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Regularization makes it work

min
g,u,y

Tfuture∑
k=1

∥yk − rk∥2
Q + ∥uk∥2

R + λgh(g)+λσ∥σ∥

subject to H
(

ud

yd

)
· g =

 uini
yini

u
y

 + σ

uk ∈ U , ∀k ∈ {1, . . . , Tfuture}
yk ∈ Y, ∀k ∈ {1, . . . , Tfuture}

regularization ↔ robustness?? – hot research topic

behavioral model is deterministic
→ a posteriori justifications

noisy data matrix H
(

ud

yd

)
is usually full rank

→ any (u
y) is feasible

solution based on heuristics: add regularizer h(g)
→ tuning λg is non-trivial
typical choices: 1-norm, 2-norm, projected 2-norm

‖g‖p∥∥∥Proj
(

ud

yd

)
g
∥∥∥
p
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Towards a stochastic behavioral systems theory

Behavioral systems theory:
trajectories are in a set →
deterministic approach

Subspace

Probability distr.

Analogously stochastic
systems: trajectories follow a
probability distribution

How much structure do we want to impose?

+ Gaussianity

General stochastic behaviors1,
polynomial chaos expansions2

→ limited applicability

Simple and pragmatic framework leading to tractable control methods

1) J. C. Willems, “Open stochastic systems,” IEEE TAC, 2012
2) T. Faulwasser et al., “Behavioral theory for stochastic systems? A data-driven journey from Willems to Wiener and back again,” ARC, 2023
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Gaussan behaviors

Gaussian behavior: trajectories
distributed as a Gaussian Processuini

yini
u
y

 ∼ N (µw, Σw)

Consistent with state-space equations
with additive Gaussian noise

xk+1 = Axk + Buk + ξk

yk = = Cxk + Duk + ηk

⇓
µw, Σw have structure!

Deterministic LTI behaviors: special case with
singular covariance matrix

im(Σw) = B =⇒

uini
yini
u
y

 ∈ B with probability 1

Special case of stochastic behaviors with the
• Borel σ-algebra
• Probability measure given by Gaussian

process

12 / 22



Prediction

Predict y given uini, yini and u by conditioning!

Conditioning removes uncertainty from uini, yini and u

µw =
[

µgiven
µy

]
, Σw =

[
Σgiven Σ⊤

y,given
Σy,given Σy

]
.

Conditional distribution is Gaussian with mean and variance

µ = µy + Σy,givenΣ†
given

([
uini
yini
u

]
− µgiven

)
, (nominal prediction)

Σ = Σy − Σy,givenΣ†
givenΣ⊤

y,given (uncertainty quantification)

uini
yini
u
y

 =

 I

Σy,givenΣ†
given


︸ ︷︷ ︸

subspace

[
uini
yini
u

]
+

0
0
0
e


︸︷︷︸

∼N (·,Σ)

Partitions trajectory
into deterministic
and stochastic parts

Conditioning
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Identification

Offline data matrix

H
(

ud

yd

)
=

[Hini
Hu

Hy

]
=

u1
ini u2

ini . . . uD
ini

y1
ini y2

ini . . . yD
ini

u1 u2 . . . uD

y1 y2 . . . yD


Each column is a sample from the distribution N (µw, Σw)

Estimate Σw by sample covariance

Σw ≈ 1
D

HH⊤

i.i.d. zero mean samples from traj. space → ML estimate

Generalizes the non-parametric model of (deterministic)
behaviors: im(HH⊤) = im(H)

Estimate predictive distribution

y|uini, yini, u ∼ N (µ, Σ) ≈ N (µ̂, Σ̂)

µ̂ = Hy

[
Hini
Hu

]†
[

uini
yini
u

]

Σ̂ = 1
D

Hy

I −
[

Hini
Hu

]† [
Hini
Hu

]
︸ ︷︷ ︸
projection to row span

H⊤
y

µ̂ is a function of u!

→ subspace predictor1 from subspace SySID

1) W. Favoreel et al., “SPC: Subspace predictive control,” IFAC, 1999.
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Predictive control with Gaussian behaviors

Est. predictor y|uini, yini, u ∼ N (µ̂, Σ̂) is uncertain

Control cost: J(u, y) = ∥y − yref∥2
Q + ∥u∥2

R

Certainty-equivalence control = SPC
min
u∈U

EN(µ̂,Σ̂)[J(u, y)] = J(u, µ̂) + tr(QΣ̂)

Account for uncertainty in µ̂ → allow for small
deviation (Σ is fixed)

min
u∈U

min
µ

EN (µ,Σ)[J(u, y)]

s.t. DKL

(
N (µ, Σ)

∥∥ N
(
µ̂, Σ̂

))︸ ︷︷ ︸
KL divergence

≤ ϵ

µ̂ yrefµ⋆

∝ 1
λ

Lift constraint to cost

Distributionally optimistic problem

min
u∈U,µ

EN (µ,Σ)[J(u, y)] + λ · DKL

(
N (µ, Σ)

∥∥ N
(
µ̂, Σ̂

))
Theorem
DeePC with h(g) = ∥(I − Π)g∥2

2 and without output
constraints ≡ DO problem with λ = λg

2
D

.
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Distributionally robust control

Conservative formulation: optimize worst-case

Distributionally robust problem

min
u

max
µ

EN (µ,Σ)[J(u, y)]

s.t. DKL

(
N (µ, Σ)

∥∥ N
(
µ̂, Σ̂

))
≤ ϵ.

Theorem
For a large enough λ, the cost of DR problem is upper bounded by

EN (µ⋆,Σ)[J(u, y)] − λ
(
DKL

(
N (µ⋆, Σ)

∥∥ N (µ̂, Σ̂)
)

− ϵ
)

,

where

µ⋆ := (λΣ̂−1 − Q)−1(λΣ̂−1µ̂ − Qyref).

µ̂ yrefµ⋆

∝ 1
λ

Minimizing the upper bound leads to
the convex problem

min
u

∥λΣ̂−1µ̂ − Qyref∥2
(λΣ̂−1−Q)−1

− λ∥µ̂∥2
Σ̂−1 + ∥u∥2

R
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Case study
• Rotating discs with springs + dampers
• Input is a single torque
• Process and measurement noise
• Single trajectory of length 1000 → µ̂, Σ̂ S. Kerz et al., “Data-driven tube-based stochastic predictive control", IEEE OJCS, 2023

More interesting: chance constraints and optimization over Σ
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Leveraging the predictor’s variance

time

y

et
et+1

. . .

Predicted
Realized

 et

et+1
...

 ∼ N (0, Σ) → et, et+1, . . . correlated!

Shape the trajectory’s variance through
feedback on error

u = uff + Kcausale

→ y = Mini

[
uini
yini

]
+ Muuff︸ ︷︷ ︸

µ̂

+ (MuKcausal + I)e

u and y are stochastic → add chance constraints

Pr(yk ∈ Y), Pr(uk ∈ U) with at least 99% probability

min
uff ,Kcausal

E[J(u, y)] = J(uff , µ̂) + tr
(
R ·

Σu︷ ︸︸ ︷
KcausalΣK⊤

causal
)

+ tr
(
Q · (MuKcausal + I)Σ(MuKcausal + I)⊤︸ ︷︷ ︸

Σy

)
s.t.

Pr(a⊤
i u ≤ bi) ≥ δi, i = 1, 2, . . .

Pr(c⊤
i y ≤ di) ≥ γi, i = 1, 2, . . .

}
chance
constraints

For polytopic Y and U → convex problem
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Case study – chance constraints

More cautious controller using the predictor’s uncertainty estimate
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Case study – disturbance feedback

Feedback reduces the variance of open-loop output trajectories
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Summary

Subspace

Probability distr.

• Proposed Gaussian behaviors for modeling stochastic systems
• Model deterministic and stochastic parts of systems
• Stochastic interpretation of existing methods (DeePC and SPC)
• Proposed novel distributionally robust formulation
• Leveraging the uncertainty quantification: chance constraints and

disturbance feedback
Outlook

• Extend framework beyond linear systems and Gaussian noise
• Online adaptation of Gaussian behaviors

Conditioning
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