n Conference on Decision and Control
C(DC2025

Gaussian behaviors:
representations and

data-driven control

Andras Sasfi
December 9, 2025

AUTOMATIC m W
CONTROL g v,
LABORATORY




Acknowledgment

Florian Dorfler Alberto Padoan Ivan Markovsky
@ ETH Zrich @ UBC Vancouver @ ICREA & CIMNE Barcelona

1/22



Direct data-driven control works very well across case studies

s0ft robotics (by H. Wang et al) D Quadruped oy Fawcat, Asar Ames, & Hamed) greenhouse automation by Automatoes) combined cycle power piant (by P Mahdavipour et. a)

of charge (S0C) (0%-100%)

). Wang et al) battery charging (by K. Chen et al) wind turbine control

closad-loop diabetes control (X. Lu et a) e conttm synchronous motor drive ‘energy hub & building automation power system oscilation damping

...especially when first-principle models are hard or impossible to get
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Direct data-driven control

Based on behavioral systems theory

“direct" data-driven control
minimize  control cost (u,y)

subject to trajectory (u,y) compatible with
non-parametric model from raw data

Deterministic framework — need regularization!

So far: a posteriori justifications of robustness

Bottom-up stochastic modeling framework

® simple — tractable control fromulations
e robust by design

,,,,,,,,,,,,,,,,,,,,,,,,,,

e quantify and shape uncertainty of trajectories
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Outline

1. Data-driven control based on behavioral systems theory

2. Bottom-up stochastic modeling framework: Gaussian behaviors

3. Predictive control with Gaussian behaviors
@ New insights on existing formulations
@ Distributionally robust control
@ Chance constraints and variance shaping
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Outline

1. Data-driven control based on behavioral systems theory
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Behavioral view on dynamical systems

Jan Willem Polderman

Jan C. Willems
Definition: A discrete-time dynamical R
. 23| Introauction (o
system is a 3-tuple (Z>q, W, %) where I\SAalhema_tri_cal
- ystems Theory
(i) Z>o is the discrete-time axis, ABehaioral Approach

% is the set of

(i) W is the signal space, & all trajectories

(i) B C W?=0 is the behavior.
Definition: The dynamical system (Z>o, W, %) is

(i) linear if W is a vector space & % is a subspace of W#>0

(i) & time-invariantif w, € Z — w41 € B

LTI system = shift-invariant subspace of trajectory space

— abstract perspective suited for data-driven control
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Fundamental Lemma

u(t) y(t)
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set of all T-length trajectories =
{ (u,y) € RPIT . 3z ¢ R* T st

= Az + Bu,y=Cx+ Du }
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Data-enabled Predictive Control (DeePC) <> Model Predictive Control

Tfuture Tfuture
g 2 2 . 2 2
min > flye = vrell + el min Y [y grerl + el
gy = wy
Uini s.t. Tl = Az + Bug
s.t. H(:;)-g: Gl Yy = Cxp + Dug
E u .
. non-parametric xo = z(t)
. model for prediction up €U, Yk e {1,..., Tiuure}
ug €U, V€L, Thure} and estimation
y €Y, Vke{l,...,Tuure}

ykey7 Vke{lynwﬂuture}
® real-time measurements (uini, yini) for estimation updated online
. . 9 .
® trajectory matrix 7—[( yd) from past experimental data collected offline

Equivalent to MPC in deterministic LTI case ...but does not work in case of noise!
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Regularization makes it work

Tfuture
. ) ,
min Y flys = rrll + sl + Aah(9) oo

T k=1

Uini

subject to H(uj) = Yini i
g u
Yy

ug €U, Vke{1,..., T}
Yr €Y, Vke{la“-vauture}

regularization +» robustness?? — hot research topic

On the Impact of | Towards explainable data-driven predictive control with
on the P Regui: regularizations

PO Bagie

d Re - Manuel Ktk Sland Morz Schize Darup

behavioral model is deterministic
— a posteriori justifications

: ) is usually full rank

u
Yy

noisy data matrix 7—[(
— any (,) is feasible
solution based on heuristics: add regularizer h(g)

— tuning A4 is non-trivial
typical choices: 1-norm, 2-norm, projected 2-norm

— gl

— [P (32)9]
H Iy g],

10 102 10° 102 10 108



Outline

2. Bottom-up stochastic modeling framework: Gaussian behaviors
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Towards a stochastic behavioral systems theory

Probability distr.

Behavioral systems theory:
trajectories are in a set —
deterministic approach

Analogously stochastic
systems: trajectories follow a
probability distribution

How much structure do we want to impose?

General stochastic behaviors?,

Iti-st impulse A .
LA - ﬂ redictor <& => response  polynomial chaos expansions?
" 1 it . . . . . . s

}H > s o s time-invariance, low — limited applicability

s property ’ o

G havior recursive models: ARX,

iS%;Te is.” + GaUSSIanIty model => state space...

Simple and pragmatic framework leading to tractable control methods

1) J. C. Willems, “Open stochastic systems,” IEEE TAC, 2012
2) T. Faulwasser et al., “Behavioral theory for stochastic systems? A data-driven journey from Willems to Wiener and back again,” ARC, 2023
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Gaussan behaviors

Gaussian behavior: trajectories
distributed as a Gaussian Process

Uini
yZIi NN(wazw)
Y

Consistent with state-space equations
with additive Gaussian noise

Tpt+1 = Azxy + Bug + &
Yk = = Cxp + Dug + 1

4

Jw, Y have structure!

Deterministic LTI behaviors: special case with
singular covariance matrix

Uini
im(Sy) = 2 = y;“i € % with probability 1

Y

Special case of stochastic behaviors with the
® Borel og-algebra

® Probability measure given by Gaussian
process
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Prediction

Predict y given uini, yini and u by conditioning!

Conditioning removes uncertainty from wni, yini and «

Hy

[ = |:,U/given:| , )

w =

Ey,given Ey

T
_ |: Egiven Z:y,givenj|

Conditional distribution is Gaussian with mean and variance

Uini

1= iy + Zy givenShiven ( [ymi] - ugiven> ., (nominal prediction)

(2

— . T T
3= Ey - Zy,glvenzgivenzy,given
Uini W
Yini I ini
@ S Yini
oSt u
) Eyyglveﬂzgiven

subspace

(uncertainty quantification)

0
0 Partitions trajectory
0 into deterministic
e and stochastic parts
~—~
~N(T)

l Conditioning
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Identification

Offline data matrix

1 2 D
Uini  UWini --- Uini
Hini 1 2 D
H ( u: ) _ H _ | Yini Yini cee Yini
= I —
Y H ut u? P
y 1 2 D
Yy Yy )

Each column is a sample from the distribution A (ptw, Xw)

Estimate 3., by sample covariance

1 T
Y R BHH

i.i.d. zero mean samples from traj. space — ML estimate

Generalizes the non-parametric model of (deterministic)
behaviors: im(HH ") = im(H)

Estimate predictive distribution

Ytini, Yini, u ~ N (1, 2) = N (1, 32)
Hini:| t | Wini
Yini
u

ﬂ_Hy[Hu
N 1 Gy f Hins T
s |- (][R |

projection to row span

[ is a function of u!

— subspace predictor' from subspace SySID

1) W. Favoreel et al., “SPC: Subspace predictive control,” IFAC, 1999.
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Outline

3. Predictive control with Gaussian behaviors
@® New insights on existing formulations
@ Distributionally robust control
@ Chance constraints and variance shaping
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Predictive control with Gaussian behaviors
Est. predictor y|uini, yini, u ~ N (i, ) is uncertain

Control cost: J(u,y) = lly — yret[[§ + llul%

Certainty-equivalence control = SPC

min  Ey(.5)17(09)] = J(u, ) + (@) Z

Account for uncertainty in i — allow for small Lift constraint to cost

deviation (% is fixed) Distributionally optimistic problem
i i Enu.s) [/ (u, y)] u%lzifl}uEN(“’E)[J(uy y)] + A Dkr (./\/'(N’ ¥) H N (ﬂ7 f}))

s.t. Dgkr (./\/'(,u,E) H N(ﬂ,f])) <e

KL divergence Theorem

DeePC with h(g) = ||(I — TI)g||3 and without output
constraints = DO problem with A = A\, 2.
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Distributionally robust control

Conservative formulation: optimize worst-case
Distributionally robust problem
ran»nE?X EJV(M,E)L](U7Z/H

st. Dir (N(p,2) ||V (2,8)) <e

Theorem

Minimizing the upper bound leads to

For a large enough ), the cost of DR problem is upper bounded by  ihe convex problem

Enx(us,s)[J(u,y)] — A (DKL (./V'(N*» b)) || N(a, ZA:)) - E) g

where

min INZTH 0 — Quretl[yg-1_ gy
— Al + llullk
= (AT = Q)T ST A — Qurer).
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Case study

Rotating discs with springs + dampers

Input is a single torque

Process and measurement noise

Single trajectory of length 1000 — 4, X

1.4

Distributionally optimistic control

My ! @y J2 My
by b,
] \ ) '\l )
a5 /

S. Kerz et al., “Data-driven tube-based stochastic predictive control", IEEE OJCS, 2023

- = =reference

1.6

Distributionally robust control

- = =reference

More interesting: chance constraints and optimization over

18/22



Leveraging the predictor’s variance

Yy
- - - - Realized ’,,o—""
Predicted ¥ 2
,—'.”
time
€t
€t+1| ~ N(0,%) — e, er41,. .. correlated!

Shape the trajectory’s variance through
feedback on error

u = ug + Kcausale

Uini

= ]\"'Iini
- v |:yini

:| + ]\[ullﬁ + (Afu Kcausal + I)€

[

u and y are stochastic — add chance constraints

Pr(yr € )), Pr(ur € U) with at least 99% probability

Zu
—_——

E[J(u, y)] = .](’U,(r, /}) + tr (R : Kcausalch—-;usal )

min
ufr, Kcausal

A tr<Q : (Aichausal + I)E(]\/[chausal + I)T )
Sy

©=1,2,...] chance
i=1,2,...) constraints

Pr(a; u < b;) > &;,
Pr(c]y < di) >,

s.t.

For polytopic ) and ¢/ — convex problem
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Case study — chance constraints

More cautious controller using the predictor’s uncertainty estimate

11

Subspace predictive control (SPC)
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Case study — disturbance feedback

Feedback reduces the variance of open-loop output trajectories

SPC with chance constraints

feedback
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Summary

Probability distr.

Subspace

~

* Model deterministic and stochastic parts of systems J conditioning

* Proposed Gaussian behaviors for modeling stochastic systems

e Stochastic interpretation of existing methods (DeePC and SPC)
® Proposed novel distributionally robust formulation

® |everaging the uncertainty quantification: chance constraints and
disturbance feedback

Outlook
e Extend framework beyond linear systems and Gaussian noise

¢ Online adaptation of Gaussian behaviors .
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